A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems

نویسندگان

  • Donald L. Brown
  • Maria Vasilyeva
چکیده

In this paper, we consider the numerical solution of poroelasticity problems that are of Biot type and develop a general algorithm for solving coupled systems. We discuss the challenges associated with mechanics and flow problems in heterogeneous media. The two primary issues being the multiscale nature of the media and the solutions of the fluid and mechanics variables traditionally developed with separate grids and methods. For the numerical solution we develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves problem on a coarse grid by constructing local multiscale basis functions. The procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed in the offline phase and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We implement this algorithm on two heterogenous media and compute error between the multiscale solution with the fine-scale solutions. Randomized oversampling and forcing strategies are also tested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling

In this paper, we consider the numerical solution of some nonlinear poroelasticity problems that are of Biot type and develop a general algorithm for solving nonlinear coupled systems. We discuss the difficulties associated with flow and mechanics in heterogenous media with nonlinear coupling. The central issue being how to handle the nonlinearities and the multiscale scale nature of the media....

متن کامل

Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems

The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...

متن کامل

A rigorous Multiscale Method for semi-linear elliptic problems

In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of o...

متن کامل

Localization of elliptic multiscale problems

This paper constructs a local generalized finite element basis for elliptic problems with heterogeneous and highly varying diffusion coefficient. The basis functions are solutions to local problems on vertex patches. The error of the corresponding generalized finite element method decays exponentially with respect to the number of layers of elements in the patches. Hence, on a uniform mesh of s...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 294  شماره 

صفحات  -

تاریخ انتشار 2016